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Fig. 1. We introduce a new, efficient and scalable computational differentiation technique for path-space differentiable rendering. We formulate image-loss
gradients — an essential ingredient for solving inverse-rendering optimizations — as differential path integrals, before introducing new algorithms to efficiently
estimate these path integrals. This example involves a underwater scene with a glossy Lucy model. We optimize the shape of the air-water interface (described
using 651 mesh parameters) to match the caustics patterns. Our system improves on the generality and performance for solving inverse-rendering problems
that involve both complex light transport effects and large numbers of parameters. (Using Adobe Acrobat and clicking on column (c) will play an animation of

our optimization.)

Efficient differentiation is crucial for the practicality of differentiable render-
ing systems. Unfortunately, due to the complex and irregular computations
involved in physics-based rendering, the differentiation process can lead
to very large computation graphs—even with widely adopted and highly
optimized automatic differentiation (AD) libraries.

In this paper, we introduce a new formulation that expresses image-loss
gradients as differential path integrals and fully decouples path sampling and
computational differentiation. Based on this formulation, we develop new al-
gorithms that offer the flexibility of using general light sampling techniques
(such as bidirectional path tracing) and handling computational differen-
tiation without relying on adjoint simulations. Additionally, we develop a
new differentiable renderer capable of solving challenging inverse-rendering
problems with large numbers of parameters, geometric changes, and com-
plex light transport effects like caustics. We demonstrate the effectiveness
of our technique using several synthetic examples.

CCS Concepts: « Computing methodologies — Rendering.

1 Introduction

Physics-based forward rendering methods simulate the flow of light
to numerically estimate the responses of radiometric detectors given
fully described virtual scenes. In contrast, physics-based differen-
tiable rendering treat the problem of estimating gradients of detector
responses with respect to scene parameters. Differentiable render-
ing enables (i) gradient-based inverse-rendering optimization and
(ii) the integration of forward rendering into machine learning and
probabilistic inference pipelines, and so has a wide array of applica-
tions in graphics, vision, computational imaging and computational
fabrication.

Many recent works address physics-based differentiable render-
ing. Li et al. [2018] introduced the first general-purpose demonstra-
tion of the differentiability (in principle) of forward rendering. Their
method proposes Monte Carlo edge sampling to handle geometric
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discontinuities which are essential for differentiation with respect to
scene geometries. This was later generalized by Zhang et al. [2019;
2020; 2021b] to handle volumetric light transport, before proposing
a unified formulation of the differential path integral. Here, similar
to the path integral formulation for forward rendering [Veach 1997;
Pauly et al. 2000], the differential path integral formulation has
enabled the development of sophisticated differentiable rendering
algorithms.

Computational differentiation is another key technology in dif-
ferentiable rendering. Previously, differentiable renderers typically
relied on general-purpose automatic differentiation (AD) frame-
works such as PyTorch [Paszke et al. 2019] and Enoki [Jakob 2019]
to differentiate light path contributions. Unfortunately, since the
computations involved in differentiable rendering are usually com-
plex and irregular, the computational differentiation process can
lead to very large computation graphs that are prohibitively ex-
pensive to evaluate and store—even with widely-adopted, highly
optimized reverse-mode AD libraries.

To address this problem, several recent methods formulate image-
loss gradients as solutions to an adjoint transport problem [Nimier-
David et al. 2020; Vicini et al. 2021] . This avoids the need to store
entire computation graphs and permit the “local” application of AD
(e.g., when differentiating BSDF evaluations), significantly improv-
ing the overall system performance. The design of these techniques
is, however, a bi-product of a differentiable unidirectional path trac-
ing formulations. As a result, they are not readily generalizable to
other transport paradigms, such as bidirectional methods.

We introduce a new formulation of gradients of image losses as
differential path integrals, and an efficient algorithm for comput-
ing these gradients. Our formulation completely decouples path
sampling and computational differentiation, allowing the former
to be handled using general light sampling techniques (i.e., beyond
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unidirectional path tracing) and the latter to be treated without
relying on any adjoint simulation.

From a theoretical perspective, previous techniques [Nimier-
David et al. 2020; Vicini et al. 2021] can be treated as special-case
instance of our formulation and method—akin to how unidirectional
path tracing can be considered as a specific sampling strategy for
the path integral formulation of light transport. Concretely, our
contributions are:

e anew mathematical framework of image-loss gradients as differ-
ential path integrals involving interior and a boundary compo-
nents (§4);

e highly-efficient computational differentiation algorithms to com-
pute the interior component, exploiting the layered structure of
the global computation graph (§5.1);

e areverse-mode treatment of the boundary component computa-
tion under our unified framework (§5.2); and,

e anew CPU-based system with efficiency rivaling state-of-the-art
GPU-based solvers (§6.1).

We validate our technique and system using several differentiable-
rendering and inverse-rendering experiments.

2 Related Work

Path-space rendering. Veach [1997] introduced the formulation of
path integrals by recursively expanding the rendering equation [Ka-
jiya 1986]. This formulation was later extended to handle volumetric
light transport by Pauly et al. [2000].

The path-integral formulation expresses radiometric measure-
ments as high-dimensional integrals, enabling the development of a
wide array of new Monte Carlo estimators (e.g., [Veach and Guibas
1995, 1997; Jakob and Marschner 2012]) that are capable of effi-
ciently simulating challenging effects such as indirect illumination
and near-specular transport.

Physics-based differentiable rendering. Physics-based differentiable
rendering is concerned with numerically computing derivatives of
forward-rendering results with respect to arbitrary scene param-
eters (such as object geometries and optical material properties).
In general, physics-based differentiable rendering requires estimat-
ing interior integrals given by differentiating forward-rendering
integrands as well as boundary integrals defined over discontinuity
boundaries of those integrands.

Previously, the interior integrals have been mostly estimated by
adopting Monte Carlo methods developed for forward rendering.
Recently, new sampling techniques specifically designed for differ-
entiable rendering have been introduced [Zeltner et al. 2021; Zhang
et al. 2021a]. Since our formulation completely decouples path sam-
pling and computational differentiation, our technique is largely
orthogonal to these methods.

The boundary integrals are unique to differentiable rendering. It
has been shown that the integrals in this special case can be handled
by Monte Carlo edge sampling [Li et al. 2018; Zhang et al. 2019] or
avoided altogether by reparameterizing rendering integrals [Loubet
et al. 2019; Bangaru et al. 2020].

Recently, Zhang et al. [2020; 2021b] have introduced the differen-
tial path integral framework that formulates both the interior and
the boundary components as full path integrals, making it possible
for the development of sophisticated Monte Carlo estimators for
both components (beyond unidirectional path tracing). Our tech-
nique is built upon this formulation but with a focus on efficient
computational differentiation.

Computational differentiation. Automatic differentiation (AD) al-
lows the derivative of a function specified by a computer program to
be evaluated numerically. These techniques have been widely used
in machine learning and statistical inference [Griewank and Walther
2008; Wengert 1964; McClelland et al. 1986] to obtain gradients of
complex functions (e.g., neural networks). Recently, several general-
purpose AD frameworks such as TensorFlow [Abadi et al. 2016],
PyTorch [Paszke et al. 2019], and Enoki [Jakob 2019] have been de-
veloped. Further, systematic handling of discontinuities—which has
been neglected by most AD frameworks—has been explored [Ban-
garu et al. 2021].

Most general-purpose differentiable rendering techniques, in-
cluding ours, utilize automated differentiation. Theoretically, our
main theory and algorithms (§4, §5) are orthogonal to the choice
of automated differentiation method. In practice, we utilize the En-
zyme AD framework [Moses and Churavy 2020] to develop our new
differentiable rendering system (§6.1).

3 Preliminaries

We now briefly review mathematical preliminaries of the path inte-
gral (§3.1) and differential path integral (§3.2) formulations.

3.1 Path integral

A key mathematical formulation that has enabled the development
of many advanced rendering algorithms (such as bidirectional path
tracing) is the path integral [Veach 1997; Pauly et al. 2000]. Under
this formulation, the response I € R of a radiometric detector is
expressed as an integral of the form:

1= [ 1@ aucs) 1)

where X = (xg, x1, ..., xn) denotes a light transport path with ver-
tices x, € M for each 0 < n < N (such that x lies on a light source
and xy on the detector); Q is the path space; f is the measure-
ment contribution function; and y is the Lebesgue measure on Q.
In case of surface-only light transport, for instance, Q = U;‘,’:lMN +
where M is the union of all object surfaces, and y is the area-product
measure (ie., du(x) = HnN=0 dA(x,) with surface-area measure A).

Physics-based rendering typically involves estimating multiple,
say myp, response values (e.g., one per pixel). To this end, we make
the measurement contribution function to be vector-valued, denoted
as f. Then, Eq. (1) can be rewritten in a vector-valued form as

I=Lﬂ@@®, )

where I, f(x) are mr-dimensional (column, i.e., R™*1) vectors.



3.2 Differential path integral

Recently, to facilitate the development of advanced Monte Carlo
differentiable rendering techniques, Zhang et al. [2020; 2021b] have
introduced the formulation of differential path integral that gives
the derivatives of path integrals of Eq. (1) with respect to arbitrary
scene parameters 6 € R.

Material-form reparameterization. When the scene geometry M
depends on the parameter 0, so will the path space Q. This makes
the differentiation of Eq. (1) more complicated. To address this issue,
Zhang et al. have introduced a material-form reparameterization
to path integrals, which works by applying a change of variable to
Eq. (1). Specifically, let B be some reference configuration that is
independent of the scene parameter 6 and X(+, ) be a differentiable
one-to-one mapping from B to M () for any 6. Then, X(+, ) induces
another one-to-one mapping X(-, 0) from material light paths p =
(Po, - - -, pN) to ordinary light paths X(p, 0) = (xy,...,xn) € Q(6)
where x, = X(pp,0) for all 0 < n < N. Applying a change of
variable based on the relation ¥ = X(p,0) to Eq. (1) leads to the
material-form path integral:

= /Q F(p) du(p). )

where Q is the material path space independent of 6, and f is
the material measurement contribution given by the ordinary
measurement contribution and the Jacobian determinant capturing
the change of variable from x to p.

If practice, when estimating derivatives at some 0 = 6, the refer-
ence configuration is typically selected as 8 = M (6y). This makes
X(+, 6y) the identity map.

Differential path integral. Differentiating Eq. (3) w.r.t. a scene
parameter 0 yields the material-form differential path integral:

interior boundary
dI df 2
g /O Y paup) |+ LQAfK@)v(pK)dp(ﬁ), @

where 9Q) is the (material) boundary path space comprised of
(material) boundary paths that are essentially material paths with
exactly one vertex pg such that Xx_; xx is a boundary segment—
that is, xx_; and x are located on the visibility boundary’ of each
other. We note that, although the material path space Q is indepen-
dent of the scene parameter 0, the boundary path space 92 generally
does depend on 6 (as the visibility boundaries can move when the
scene geometry changes). Additionally, v(pk) is a scalar capturing
the change rate of px (when px_; is fixed) with respect to 6 along
the normal of the visibility boundary.

Vector-valued forms. Rewriting the material path integral (3) in
vector-valued forms for mj radiometric measurements (i.e., I €
R™I*1) and my scene parameters (i.e., @ € R™0*1) gives:

I= /Q F(p) du(p). )

'When x is a surface vertex, the visibility boundary (with respect to xx 1) consists of
a set of curves. When xx is a volume vertex, the boundary consist of a set of surfaces.
Please see the work by Zhang et al. [2021b] for more details.
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where f (p) is an my-dimensional (column) vector. We note that, in
general, the scene geometry M as well as the mappings X (from the
reference configuration B to the scene geometry) and X (from mate-
rial paths to ordinary ones) can depend on all scene parameters 6.

Given Eq. (5), it is easy to verify that the vector-valued form of
the differential path integral (4) is:

interior boundary

df .
| [H@am |+ [ afpopoTam . ©

oQ

where d1/de, (4f/d0)(p) € R™*™6; Afi(p) € R™*1; and v(px) €
R™0%1 We note that, v(pg) is a vector now since the scalar change
rates (along the normal of visibility boundaries) vary among dif-
ferent scene parameters. Further, although some terms in Eq. (6)
such as d/a¢ and (¢f/d6)(p) can be extremely large (i.e., consist of
trillions of elements), they do not need to be stored explicitly when
calculating gradients of loss functions, which we discuss in §4.

As a special case, when the scene parameters 6 do not control
geometry (in other words, no visibility boundary depends on 6),
the mapping X(-, @) reduces to the identity map for all 8—which
causes the material path space ) to be identical to the ordinary
path space Q—and the boundary integrals in Eqgs. (4) and (6) vanish.
Then, Eq. (6) reduces to the well-known result

a_ [df
a0 s ag 0 du(@) ™

obtained by exchanging the order of differentiation and integration.

4 Gradients as Path Integrals

Many inverse-rendering problems are formulated as finding scene
parameters @ € R™6 minimizing some (scalar-valued) loss £:

6" = argmgin.E(I(G)) . (8)

This framing is referred to as analysis by synthesis in computer
vision. In practice, the loss £ can also directly depend on 6 when,
for instance, regularizing scene parameters. This is orthogonal to
our work and we omit this dependency in the remainder of our
exposition.

Efficiently solving optimization problems as in Eq. (8) requires
computing gradients of the loss £ with respect to the scene param-
eters 0. Based on the chain rule, it holds that

dL

dI
10" (BI-C)@» 9

where d£/dg € R™0 and 9;.L = 9£/ar € R*™I are row vectors,

and d1/dg is an (my X mg)-matrix. Lastly, substituting the differential
path integral of Eq. (6) into Eq. (9) yields:

interior

d df
S| [@n S mum |+
(10

boundary

/a (@1.0) M) o(pi)” dip)
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Fig. 2. Given a material light path p = (po, ..., PN-1, PN ), its material
measurement contributionf([)) is typically very sparse where only compo-
nents corresponding to pixels that “intersect” the segment xN_; xy—i.e.,
pixels whose reconstruction filters have supports covering the projection of
xN-1 on the image plane—are nonzero.

Given Eq. (10), we make the following key observation: Taking
as input d7.L (with the same dimension as I), the gradient 4£/de can
be computed directly by estimating (interior and boundary) path
integrals—that is, without the need to compute or store the large
matrix dI/d¢ (or individual elements of I in a differentiable fashion).

In what follows, we examine both the interior and the boundary
components of Eq. (10). Additionally, we will discuss numerical
estimations of these terms in §5.

Interior component. Without loss of generality, the vector-valued
form of material measurement contribution function f can be ex-
pressed as the product of a vector-valued f, and a scalar-valued fl
That is, for any material path p, we have

f(p) = fo(p) fi(P), (11)
where fo(p) € R™*! and f;(p) € R.
When the radiometric measurements I are the pixels intensities of
a perspective pinhole camera — which is the case we focus on — fB (p)
encodes the per-pixel reconstruction filters, while fl (p) captures
the product of all the other components—such as BRDFs, geometric
terms, and Jacobian determinants resulting from the material-form
reparameterization—that are invariant across pixels. In this case,
for any given material light path p = (po, . .., pn—1, PN), fo(P) €
R™*1 s generally sparse since only pixels whose reconstruction
filters “cover” the segment xy_7 xn will have nonzero values (see
Figure 2). Let nz(p) C {1,2,...,my} denote the indices of nonzero
elements of f,(p). Then, it holds that the integrand of the interior
term in Eq. (10) equals

df

@0 L@= Y Gor S (fem).

renz(p)
where (97L)[r] and f({))[r]—both of which are scalars—denote
the r-th components of 91 L and f(p), respectively.

Boundary component. The boundary integral in Eq. (10) is unique
to differentiable rendering. Similar to f (p) in the interior term,
Afx(p) in the boundary integral is also sparse in general, when the
radiometric measurement I are pixel intensities. It follows that the
integrand of the boundary integral equals

(01L) A (p)o(p) =D (a1 L) [r] (Afic (P)[r] v(pr)T  (13)

renz(p)

where (AfK () [r] € R denotes the r-th component of AfK([J). Fur-
ther, the nz(+) function in Eq. (13) is the same as the one in Eq. (12),
since the set of pixels to which a light transport path contribute is
regardless of whether the path is ordinary or boundary.

Simple case. In the special case where the parameters 6 do not
affect scene geometry (or visibility boundaries), as discussed in §3,
the material path space Q and the ordinary one Q coincide, and the
boundary integrals vanish. Eq. (10), therefore, simplifies to

/ @0 L@ s

- [ 3 @or

renz(x)

(14)
(f(x)[r D) du(x).

5 Efficient Computation of Gradients

We now introduce a new Monte Carlo framework for estimating
the gradient d£/de given by Eq. (10).

5.1 Estimating the Interior Path Integral

Given Eq. (12), we can obtain the following unbiased (single-sample)
Monte Carlo estimator of the interior component:

Srenp (@1 L)1 35 (F(p)1r1) >

pdf,(7) 1
where pdf;(p) denotes the probability density for sampling the
material light path p € Q.

A key benefit offered by our formulation of Eq. (15) is the complete
decoupling of path sampling (that is, the construction of material
light path p) and the differentiation of measurement contribution

(that is, the evaluation of the gradient F@Ir] (p )r] ~—-+—). Not having to differ-
entiate path sampling provides the beneﬁt that expensive operations
like ray-mesh (or ray-triangle) intersection need not be differenti-
ated.

We present a general-purpose method (that is not specific to
any path sampling method) for efficient evaluation of Eq. (15) in
§5.1.1, followed by a discussing of how this method can be further
optimized in unidirectional (§5.1.2) and bidirectional path tracing
(§5.1.3) settings.

5.1.1 Differentiating measurement contributions. Once a material
light path p is drawn, the estimation of the interior integral boils
down to (i) identifying all pixels affected by this path (i.e., nz(p));
and (ii) computing the numerator of Eq. (15) for each affected pixel r.
Since the first step can typically be done easily (by examining the
segment corresponding to the camera ray), we focus on the second
step in the following.

Given any material light path p = (py, ..., pn), forall @ € R™o*1,
let x = X(p, 0) = (xo, ..., xn) be the corresponding ordinary path
(where x; = X(p;, 0) for 0 < i < N). It holds that

folr ]_[fv(xn 1y 11)

1_[ G(anx,,H)] (16)

where G is the (generalized) geometric term. Additionally,

ﬁ(xn—l — Xp — xn+l) ::ﬁ(xn—l — Xp — xn+l)](Pn)’ (17)
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Fig. 3. A layered computation graph for evaluating the material measure-
ment contributionf([))[r]. All terms on which f:,(xn,l — Xp — Xn41)
depends are highlighted in orange. We omitted the vertices p;,, of the mate-
rial path p as they are independent of the scene parameters 6.

where ] is Jacobian determinant resulting from the material-form

reparameterization (i.e., the change of variable from x,, to p,), and

fv captures the measurement contribution of each path vertex:

e When0 < n < N, fy(x,-1 = X — Xp41) is given by the surface
BSDF or the scaled single-scattering phase function at x;,;

e Whenn =0, fy(x_; = x9 — x1) := Le(x9 — x1) captures the
emission at x (with x_; being a dummy variable);

e Whenn = N, fi(xN-1 = XN = XN+1) = W (w1 — xw)
represents the response of pixel r and encodes the pixel recon-
struction filter (with xx1 being a dummy variable).

Please refer to the work of Zhang et al. [2021b] for more details.
Evaluating Eq. (15) requires computing the gradient of Eq. (16)

with respect to the scene parameters 6. Since Eq. (16) is a scalar-
valued expression (per color channel or wavelength), the computa-
tion can be implemented using standard reverse-mode automatic
differentiation; however, when the light path p contains many ver-
tices, evaluating Eq. (16) will involve a great number of computations
that require a large computation graph to represent. As observed in
prior work [Nimier-David et al. 2020], this can be problematic for
storage (e.g., precluding GPU implementation) and performance.

Exploiting independencies. To address this problem, we make an
important observation that the individual fv and G terms on the
right-hand side of Eq. (16) can be evaluated in a largely independently
fashion—even if the parameters 6 control scene geometry. This is
thanks to the material-form reparameterization: gradients dxn/de of
path vertices can be computed independently by differentiating the
mapping X(-,0) forall 0 < n < N:

dx, _ oX(pn, 0)
o~ a0

Figure 3 illustrates the computation graph for evaluating f(p)[r].
This graph consists of several layers where all nodes in each layer
can be evaluated independent of each other. Exploiting this structure,
we evaluate the gradient df ()[rl/do by traversing the computation
graph in a layer-by-layer fashion.

(18)
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ALGORITHM 1: Efficient differentiation of material measurement
contribution f(p)[r] in Eq. (27) with respect to scene parameters 6

1 ComputerMeasurementContribution(6, p, r)

Input: Scene parameters 0, a material path p = (po,...,pN), and a
pixel index r
Output:f([)) [r] and its gradient df () [r]/a0
2 begin
/* Forward pass (layer 1) */
3 Xn = X(pn, 0) foreach0 < n < N;
/* Forward pass (layer 2) */
4 gn:ﬁ,(xn,l — X — Xp41) foreach0 < n < N;
5 gn =G(xp_N-1 © X,_N) foreach N < n < 2N;
/* Forward pass (layer 3) */
o | f =TI gns
/* Backward pass (layer 2): compute dg, :=df/dg, */
7 dgn:ginforeachOSrlSZN; // di//,; :]|,,f,;,,g,1/:q%
/* Backward pass (layer 1): compute dx, :=df/dx, */
8 foreach 0 < n < N do
o || (@ den ) += dg, Lo,
10 end
1 foreach 0 < n < N do
12 ‘ (dxp, dxp41) += dgn+14n ag((;:’im;
13 end
/* Backward pass (layer @) compute d@ :=df/de */
u | do =3, dx, 20,
15 return (f, de);
16 end

As shown in Algorithm 1, our technique first performs a forward
pass that evaluates f(p)[r] followed with a backward pass that
computes the gradient 4f(plr])/d6. During the latter pass, the gra-

ionts O (Eno12%n—%xne1) 96 (xn Oxns1) X(pn.60) ;
dients T a(x,,,x,,+1+) , and 50 from Lines 9,
12 and 14, respectively, can be computed efficiently using standard

reverse-mode automatic differentiation.

In what follows, we discuss how Algorithm 1 can be further
optimized for unidirectional and bidirectional path tracing - two
widely adopted path sampling methods.

5.1.2  Path-tracing-specific optimizations. Unidirectional path trac-
ing with next-event estimation (NEE) constructs a single detec-
tor subpath p° = (pD,...,pR) coupled with a set of vertices
..., pi] obtained by sampling emitter surfaces. For every 0 <
n < N, connecting pY and pS produces a full light transport path

Pn = (Do PR P12 PO)s (19)

as illustrated in Figure 4.2 Then, the interior component of Eq. (10)
can be estimated by summing Eq. (15) over all p,:

N Srenstpn (01 L)1) 35 (FB0)1r1)
>, - (20)
= pdfxeg (Pn)

2Strictly speaking, we need to also consider two-vertex paths of the form ( p(s), poD). We
neglect this corner case to simplify our derivations.
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Fig. 4. With next-event estimation (NEE), a unidirectional path tracer
effectively constructs a set of light paths that share one detector subpath
(xOD, xllj, ...) shown in blue. The arrows in this figure illustrates the flow of
light. We present a technique to efficiently compute and differentiate the
measurement contribution of all paths by factoring out common terms.

Although this expression can be evaluated by applying Algorithm 1
to each path p, individually, doing so would lead to suboptimal per-
formance since many terms such as G(xJ < xP) will be computed
(and differentiated) multiple times.

To address this problem, noting that nz(p,) = nz(pP) for all
0 < n < N, we rearrange the terms of Eq. (20) and obtain:

dh _x fpa)lr]
Z (ar.L)[r] dl\;EE where Angg =Zm (21)

renz(pP) n=1

with pdfygg (pn) treated as “detached” (i.e., independent of 6). To
efficiently compute Eq. (21), similar to how unidirectional path
tracing is implemented for forward rendering, we factor out the
common terms in the inner summation of Eq. (21). Let

hp = fo(xp = X, = x,_1) Gxyy < x3), (22)
_ ﬁ,(xg —xD - xE_l) G(xg o xD) I:e(xg — xOD)

pdfxeg (Pn)

where I:e(xg — xOD) = Le(xg — xOD)](pg) captures the emission

B :

n

. (23)

at xg. Then, it is easy to verify that, forall0 < n < N,

f(pa)lr] 0|8
_— = h | k.
pdfyez (Pn) (1__!) ”) " @9

It follows that
hxee = hg (h?*'h? (h§+h]23 (hg"'h?(“'))))’ ()

which can be differentiated in a layered fashion using a process sim-
ilar to Algorithm 1. Specifically, in the forward pass, we first obtain
path vertices x2 = X(pR, 0) and x5 = X(pS, 8) for all n (layer 1),
followed with computing individual A2 and A3 terms (layer 2). Then,
we evaluate Angg (layer 3). In the backward pass, we start with ob-
taining derivatives dhD := dhxer/drD and dhf’l := dhnee/dnj, (layer 2)
by differentiating Eq. (25). Then, we evaluate dinee/dx} and dhnee/dxs,
(layer 1) followed with the gradient dinee/de (layer 0) that can be
used to estimate the interior integral via Eq. (21).

5.1.3  BDPT-specific optimizations. A bidirectional path tracer typ-
ically constructs a source subpath pS = (pf;,p?, ...) and a de-
tector subpath pP = (pOD,p?, ...). Let ps; be the material light
path obtained by connecting the s-th vertex in the source sub-
path and the ¢-th vertex in the detector subpath. That is, ps; =

(p(s), .. ,pg, p]t), .. ,pg). Then, it holds that the interior integral in
Eq. (10) can be estimated using

Z Z Ws.t (ps,t)

st renz(ps,r)

@1 L)r1 35 (£(pan)lr)
2
i |

where pdf| , is the probability density (for sampling a path with s
vertices from the source and t from the detector), and ws, is the
corresponding multiple-importance-sampling (MIS) weight.

To evaluate Eq. (26) numerically, we start with constructing the
source and detector subpaths pS and pP followed with computing
the PDFs pdf ,(ps:) and the MIS weights w; ((ps,) for all s and
t. Since none of these terms need to be differentiated, they can be
computed in a similar way as conventional BDPT does (for forward
rendering). Then, we evaluate (in a differentiable fashion) the BSDF
and geometric terms along both the source subpath pS and the
detector subpath pP in a layered fashion similar to Algorithm 1.
Lastly, we reuse these terms to evaluate the gradient df(ps,)[r]/d6
for all s and t while avoiding duplicate computation/differentiation.

5.1.4 Relation with prior works. Our technique presented above
is closely related to some recent works [Nimier-David et al. 2020;
Vicini et al. 2021]. These techniques formulate image-loss gradi-
ents as solutions of an adjoint transport problem. From a theoreti-
cal perspective, they can be considered specific realization of our
technique—akin to how adjoint particle tracing relates to the path
integral formulation in forward rendering. In Appendix A, we pro-
vide further discussions on the theoretical connection between our
technique and those works.

5.2 Estimating the Boundary Path Integral

Eq. (13) induces an unbiased (single-sample) Monte Carlo estimator
of the boundary component of Eq. (10) as

Srens(p) @ L) [r] (Afc (PN [r] o(px)™
pdf, () ’

where pdf, (p) denotes the probability density for sampling the
boundary path p € aQ. In practice, we follow Zhang et al. [2020;
2021b] and sample p in a multi-directional fashion (starting with
the boundary segment).

With the boundary path p sampled, evaluating the numerator of
Eq. (27) is, in fact, relatively inexpensive. This is because, with dr.L
provided, the only term in the numerator that requires differentia-
tion is the scalar change rate v(pg)—as oppose to the evaluation
of the interior integral (§5.1) that requires differentiating the full
material measurement contribution. Specifically, it holds that

v(px) = (dpx /d6) " n(px), (28)

where dpx/do € R¥™6 and n(pg) is a three-dimensional (column)
vector representing the normal of the visibility boundary at pg. Let

(27)

V(pk) = pg n(px)- (29)
Then, it is easy to verify that, with the normal n(px) fixed (i.e., set

independent of 6), V is an “anti-gradient” of v satisfying

o(px) = <5V (pK). 0
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Fig. 5. Our system utilizes the Enzyme [Moses and Churavy 2020] auto-
matic differentiation framework that operates at the LLVM level by gener-
ating differentiable versions of LLVM Intermediate Representations (IR).
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It follows that the scalar-valued expression

Treni(p) (@1 L[] (Afx (p)[r]
pdfy,(p) :

with all the terms expect the first (i.e., py) fixed, is an “anti-gradient”
of Eq. (27). Thus, by applying reverse-mode automatic differentiation
(i.e., backward) to the result of this expression, we can accumulate
the contribution given by Eq. (27) to the final gradient d£/a6.

P [n(px) (31)

6 Results

We describe our differentiable rendering system that implements
techniques discussed in §4 and §5 in §6.1, before the effectiveness
of our techniques and system in §6.2 and §6.3.

6.1 Our System

We develop a CPU-based differentiable renderer that utilizes En-
zyme [Moses and Churavy 2020] for reverse-mode automatic differ-
entiation (AD).> As opposed to most conventional AD libraries that
work at the source code (e.g., C++) level, Enzyme operates at the
LLVM level by taking as input arbitrary code in LLVM Intermediate
Representation and computing gradients of that function.

Specifically, as illustrated in Figure 5, we use LLVM to compile
our C++ source code (that contains Enzyme-specific intrinsics) into
LLVM’s Intermediate Representation (IR). Then, we use Enzyme to
automatically differentiate the LLVM IR and, in turn, compile the
output into executables using LLVM.

Utilizing the Enzyme framework, we compute gradients such

as aﬁ’a((fc';ll,_;?;f:; Oy agf;:‘:::‘;)l) ,and & (gg,o) for Algorithm 1 as
well as differentiating Eq. (31) without writing much additional code
nor using special AD types (that are typically required by conven-
tional AD frameworks). Since the differentiation occurs at the LLVM
level and is integrated with LLVM’s powerful optimization pipeline,
the resulting system offers high performance and scalability — which
we demonstrate concretely in §6.2 and §6.3.

Moreover, we develop an alternative pipeline for generating gradi-
ent images with respect to one scene parameter. We use this pipeline
exclusively for debugging and validation purposes, i.e., not for
solving inverse-rendering problems. As with the main pipeline, we
employ Algorithm 1 to compute (d/d€)( f (p)[r]) in the interior
term and Enzyme to compute (d/d0)(pg n(px)) for the boundary
term. For each computed gradient vector, we select one (predeter-
mined) component and accumulate its contribution to the resulting
gradient image.

3We will open-source our implementation upon publication.

Efficient Computational Differentiation for Path-Space Differentiable Rendering « 7

(a) Ordinary (b) Reference

(c) Ours
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Fig. 6. We validate our system by comparing our generated gradient
images with references.

6.2 Validations and Evaluations

Validation. We validate our technique and system by comparing
gradient images against our strong alternative baseline pipeline
(Figure 6). The first two rows illustrate BUNNY scene with a diffuse
bunny and a LETTER Y scene with a Y-shaped object containing a
homogeneous participating medium. Both scenes are lit by area
lights and differentiated with respect to horizontal translations of
the objects. The last row uses a cAUSTICs scene with a glossy Lucy
underwater lit by a small area light above water. The gradient images
for this scene are computed with respect to the translation of the
light source.

We use differentiable unidirectional path tracing for the first two
scenes and bidirectional for the last one. In all cases, our gradient
estimates well match the references.

Performance comparisons. To evaluate the efficiency of our sys-
tem, we first compare with the GPU-based system psdr-cuda [Zhao
2021] that is based on the Enoki automatic differentiation frame-
work [Jakob 2019]. We choose this system as it shares the same
path-space formulation [Zhang et al. 2020, 2021b] as our technique.

To compare performance, we measure the time for both systems
to estimate image-loss gradients using the BUNNY scene from Fig-
ure 6 but with respect to individual vertex positions (expressed with
30,000 parameters). Since psdr-cuda supports direct illumination
only, we configure our system to only simulate one-bounce light
transport as well. As shown in Figure 7, our system offers a similar
level of performance as psdr-cuda. The latter scales better to higher
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Fig. 7. Performance comparison: When estimating image-loss gradients
under direct illumination, our CPU-based system offers a similar (albeit
improved) level of performance as psdr-cuda [Zhao 2021]. We measure
performance statistics on a single workstation with an AMD Ryzen 5950X
CPU and an Nvidia RTX Titan GPU.

sample counts due to its wavefront design and higher parallelism
offered by the GPU.

Additionally, we demonstrate the effectiveness of Algorithm 1
(as well as its further optimizations discussed in §5.1.2 and §5.1.3)
by comparing to baselines where full material measurement contri-
butions f(p) are differentiated directly using Enzyme. As shown
in Figure 8, exploiting the layered structures of the computation
graphs makes the estimation of image-loss gradients up to 6x faster
when solving inverse-rendering problems.

6.3 Inverse-Rendering Results

We now show inverse-rendering results using gradients estimated
with our differentiable unidirectional path tracer in Figures 9 and 10
as well as bidirectional path tracer in Figure 11. When optimizing
object shapes (expressed as polygonal meshes), we use Nicolet et al’s
method [2021] to update mesh vertex positions in a robust fashion
(provided the estimated gradients). Additionally, we utilize mini-
batch gradient descent when using multiple target images.

Table 1. Optimization configuration and performance statistics for our
inverse-rendering results. The “render time” numbers indicate per-iteration
computation time for estimating image-loss gradients; and “postproc.
time” captures the cost for updating mesh vertices (using Nicolet et al’s
method [2021]). All experiments are conducted on a workstation with an
AMD Ryzen 5950X 16-core CPU.

Scene # Target # Param. Batch # Iter. Render Postproc.
images size time time

Bunny 40 30,000 21,000 8.40s 0.38s
Kitry 1 50 30,000 2 1,000 4.67s 0.35s
CoIin 20 1,500,000 3 100 30.57s 11.45s
GLASS PAWN 40 60,000 2 1,000 4.06s 0.37s
LETTER Y 30 15,000 4 200 9.06s 0.97s
CUBE IN GLASS 50 30,004 2 500 12.75s 0.23s
KirTy 2 50 150,000 4 600  34.52s 1.75s
CAusTICS 1 651 1 300 6.46s 0.03s

Gradient Estimation Time (Lower is Better)

100 s

Ours
I Strong baseline

80s

60 s

40 s

20s

Fig. 8. Performance comparison: We compare running times for estimat-
ing image-loss gradients d£/de when solving the inverse-rendering problems
in Figures 9, 10, and 11. The strong baseline, which already outperforms
existing CPU-based systems [Zhang et al. 2020, 2021b], uses Enzyme to
differentiate full material measurement contributionsf([)) [r] in Eq. (15).

Table 1 summarizes optimization configurations and performance
statistics; we include animations of these results in our supplement.

In Figure 9, the BUNNY scene is the same as the top row of Figure 6
(with a diffuse bunny inside a box). The KITTY 1 scene contains
a glossy kitty inside a Cornell box, exhibiting strong interreflec-
tions. The coIN scene has a very detailed coin geometry. All there
scenes are lit by area illumination. For each of these three scenes,
we take multiple input image views (only one is shown in the fig-
ure) and solve for object shapes by minimizing L; image loss. Our
system’s performance and scalability allows us to optimize high-
resolution meshes in these inverse-rendering problems, resulting in
high-quality geometric reconstruction.

Additionally, Figure 10 demonstrates our ability to treat scenes
with non-opaque (i.e., transparent or translucent) objects: These
settings preclude the use of simpler differentiable rasterization-
based or direct illumination-only methods. The GLASS PAWN scene
contains a pawn made of blue rough glass. The LETTER Y scene is
identical to the second row of Figure 6 and has a Y-shaped object
containing a volumetric homogeneous participating medium; our
system is sufficiently fast to explicitly treat volumetric scattering
effects. The CUBE IN GLASS scene is comprised of a diffuse cube inside
a rough glass enclosure; the cube is only visible after refraction,
complicating the inverse-rendering problem. For each scene, similar
to the examples shown in Figure 9, we take multiple input images
of the object (only showing one in the figure) and optimize the
object’s shape starting from a spherical initialization. In the CUBE
IN GLASS scene, we jointly optimize the albedo of the diffuse object,
the roughness of the glass, and the cube geometry.

Lastly, Figure 11 illustrates inverse-rendering results leveraging
our differentiable bidirectional path tracer. The KITTY 2 scene con-
tains a Cornell box with a glossy kitty, comprising more complex
secondary transport and a flipped area emitter that faces and illumi-
nates the ceiling (instead of the central objects), resulting in a mostly
indirectly-lit scene. We optimized the shape of the glossy object



(initialized as a sphere) to minimize image loss. The CAUSTICS scene
is an underwater setting with a glossy Lucy object (as in Figures 1
and 6). This time, with a single target image, we optimize the shape
of the air-water interface without every directly viewing the surface.

7 Discussion and Conclusion

Limitations and future work. Our formulation is specific to the
material-form variant of steady-state differential path integral. Gen-
eralizing it to other parameterizations (such as [Bangaru et al. 2020])
and/or time-resolved settings (e.g., [Wu et al. 2021]) is an interesting
topic for future work.

We also suspect that developing efficient differentiation tech-
niques based on Algorithm 1 for path-level antithetic sampling [Zhang
et al. 2021a] can lead to compelling results.

Finally, since our system is CPU-based, developing GPU-based
extension that exploits the layered structures of the computation
graph can further the benefits of our method, opening up oppor-
tunities for broader applications where large-scale differentiable
rendering is necessary.

Conclusion. Efficient computational differentiation is essential for
the development of general-purpose differentiable renderers. We
devised a new mathematical formulation that represents image-loss
gradients as differential path integrals, allowing us to fully decouple
the sampling of light paths and the differentiation of path measure-
ment contributions. Based on our formulation, we introduced new
algorithms that efficiently compute the interior integrals (by exploit-
ing the layered structure of computation graphs) and demonstrated
how the boundary integrals can be handled under a unified frame-
work. Furthermore, we developed a new CPU-based system that
leverages the Enzyme AD framework.

Thanks to its generality and scalability, our system allows us
to solve challenging inverse-rendering problems with millions of
parameters, global geometry changes, and complex light transport
effects (such as caustics) — which we demonstrated on several chal-
lenging scenarios.
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A Relation to Prior Works

We will show that key results in some recent works [Nimier-David
et al. 2020; Vicini et al. 2021] can be, at a high level, considered
as specific realizations of Eq. (10). To do so, we first assume the
following:

e The scene parameters 6 € R™9*1 do not control object geometry
(i-e., do not affect visibility discontinuities);

o The vector-valued measurement contribution satisfies f(x) =
W, (%) fi(%) where W, (%) € R™*! indicates the detector re-
sponses, and fi(x) € R captures the remaining measurement-
contribution terms;

e W, is independent of the scene parameters 6.

Given these assumptions, Eq. (14) simplifies to

% = [ @ow S auc (32)

de —_—
= Ae (%)
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Fig. 9. Inverse-rendering results obtained with gradients estimated using our differentiable unidirectional path tracer. The mesh error plotted in column (e)
captures the Chamfer distance [Barrow et al. 1977] between the reconstructed and groundtruth geometries (normalized so that the GT has a unit bounding

box). We use this information only for evaluation (and not for optimization).

In practice, the detector responses W, usually depend only on the
last segment Xy_; xn of a light path x — that is, W (%) = W (xy — ar
S [ Aoy o)
d0 MZ

I

de

xN-1). This allows further simplification of Eq. (32) as

(%) dﬂ(f—)] dA(xn-1) dA(xn),  (33)
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Fig. 10. Inverse-rendering results obtained with gradients estimated using our differentiable unidirectional path tracer. All examples in this figure involve
non-opaque (i.e., transparent or translucent) objects that cannot be easily handled by simple rasterization-based or direct-illumination-only differentiable
renderers. The mesh, reflectance, and roughness errors are used for evaluation only (and not for optimization).

where x_ is a light path given by x with its last two vertices xn_1 Moreover, a key idea in path replay backpropagation [Vicini et al.
and xy removed. Eq. (33) is equivalent to a key result in §3.3 of the 2021] is to reuse light transport paths when recursively expanding
radiative backpropagation work [Nimier-David et al. 2020].
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Fig. 11. Inverse-rendering results obtained with gradients estimated using our differentiable bidirectional path tracer. The mesh error is used for evaluation
only (and not for optimization).

the differential rendering equation. Under the differential path in-
tegral formulation, this is equivalent to applying the product rule
when differentiating the measurement contributions. Specifically,
given a material light path p, assume f(p) = [1, g»(p) with g, (p)
capturing individual components (e.g., BSDFs and geometric terms)
of f(p). Then,

/Qdf(P)d ( )_/ (Z dgn(p) ngn P | dup). 34

n’#n
The path replay idea essentially states that the right-hand side of
this equation can be computed by reusing one path sample p, which
leads to a natural practice under the differential path integral for-
mulation (as is indeed the case for Algorithm 1).
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